Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
Add more filters










Publication year range
1.
Structure ; 32(2): 131-147.e7, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38157856

ABSTRACT

Given the continuous emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VoCs), immunotherapeutics that target conserved epitopes on the spike (S) glycoprotein have therapeutic advantages. Here, we report the crystal structure of the SARS-CoV-2 S receptor-binding domain (RBD) at 1.95 Å and describe flexibility and distinct conformations of the angiotensin-converting enzyme 2 (ACE2)-binding site. We identify a set of SARS-CoV-2-reactive monoclonal antibodies (mAbs) with broad RBD cross-reactivity including SARS-CoV-2 Omicron subvariants, SARS-CoV-1, and other sarbecoviruses and determine the crystal structures of mAb-RBD complexes with Ab246 and CR3022 mAbs targeting the class IV site, WRAIR-2134, which binds the recently designated class V epitope, and WRAIR-2123, the class I ACE2-binding site. The broad reactivity of class IV and V mAbs to conserved regions of SARS-CoV-2 VoCs and other sarbecovirus provides a framework for long-term immunotherapeutic development strategies.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/metabolism , Angiotensin-Converting Enzyme 2/metabolism , Antibodies, Neutralizing/chemistry , Antibodies, Viral/chemistry , Binding Sites , Epitopes
2.
J Immunol ; 210(9): 1247-1256, 2023 05 01.
Article in English | MEDLINE | ID: mdl-36939421

ABSTRACT

Retinoic acid-inducible gene I (RIG-I) is essential for activating host cell innate immunity to regulate the immune response against many RNA viruses. We previously identified that a small molecule compound, KIN1148, led to the activation of IFN regulatory factor 3 (IRF3) and served to enhance protection against influenza A virus (IAV) A/California/04/2009 infection. We have now determined direct binding of KIN1148 to RIG-I to drive expression of IFN regulatory factor 3 and NF-κB target genes, including specific immunomodulatory cytokines and chemokines. Intriguingly, KIN1148 does not lead to ATPase activity or compete with ATP for binding but activates RIG-I to induce antiviral gene expression programs distinct from type I IFN treatment. When administered in combination with a vaccine against IAV, KIN1148 induces both neutralizing Ab and IAV-specific T cell responses compared with vaccination alone, which induces comparatively poor responses. This robust KIN1148-adjuvanted immune response protects mice from lethal A/California/04/2009 and H5N1 IAV challenge. Importantly, KIN1148 also augments human CD8+ T cell activation. Thus, we have identified a small molecule RIG-I agonist that serves as an effective adjuvant in inducing noncanonical RIG-I activation for induction of innate immune programs that enhance adaptive immune protection of antiviral vaccination.


Subject(s)
Influenza A Virus, H5N1 Subtype , Influenza A virus , Influenza Vaccines , Influenza, Human , Humans , Animals , Mice , DEAD Box Protein 58/metabolism , Influenza A Virus, H5N1 Subtype/metabolism , Interferon Regulatory Factor-3/metabolism , Adjuvants, Immunologic , Antiviral Agents/pharmacology , Immunity, Innate
3.
MAbs ; 15(1): 2152526, 2023.
Article in English | MEDLINE | ID: mdl-36476037

ABSTRACT

To combat the COVID-19 pandemic, potential therapies have been developed and moved into clinical trials at an unprecedented pace. Some of the most promising therapies are neutralizing antibodies against SARS-CoV-2. In order to maximize the therapeutic effectiveness of such neutralizing antibodies, Fc engineering to modulate effector functions and to extend half-life is desirable. However, it is critical that Fc engineering does not negatively impact the developability properties of the antibodies, as these properties play a key role in ensuring rapid development, successful manufacturing, and improved overall chances of clinical success. In this study, we describe the biophysical characterization of a panel of Fc engineered ("TM-YTE") SARS-CoV-2 neutralizing antibodies, the same Fc modifications as those found in AstraZeneca's Evusheld (AZD7442; tixagevimab and cilgavimab), in which the TM modification (L234F/L235E/P331S) reduce binding to FcγR and C1q and the YTE modification (M252Y/S254T/T256E) extends serum half-life. We have previously shown that combining both the TM and YTE Fc modifications can reduce the thermal stability of the CH2 domain and possibly lead to developability challenges. Here we show, using a diverse panel of TM-YTE SARS-CoV-2 neutralizing antibodies, that despite lowering the thermal stability of the Fc CH2 domain, the TM-YTE platform does not have any inherent developability liabilities and shows an in vivo pharmacokinetic profile in human FcRn transgenic mice similar to the well-characterized YTE platform. The TM-YTE is therefore a developable, effector function reduced, half-life extended antibody platform.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Mice , Humans , SARS-CoV-2/genetics , Pandemics , Antibodies, Neutralizing
4.
Sci Transl Med ; 14(665): eabo6160, 2022 10 05.
Article in English | MEDLINE | ID: mdl-35857623

ABSTRACT

Human monoclonal antibodies (mAbs) that target the spike glycoprotein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) offer a promising approach for the prevention and treatment of coronavirus disease 2019 (COVID-19). Given suboptimal global vaccination rates, waning immunity in vaccinated individuals, and the emergence of SARS-CoV-2 variants of concern, the use of mAbs for COVID-19 prevention may increase and may need to be administered together with vaccines in certain settings. However, it is unknown whether administration of mAbs will affect the immunogenicity of SARS-CoV-2 vaccines. Using an adenovirus vector-based SARS-CoV-2 vaccine, we show that simultaneous administration of the vaccine with SARS-CoV-2 mAbs does not diminish vaccine-induced humoral or cellular immunity in cynomolgus macaques. These results suggest that SARS-CoV-2 mAbs and viral vector-based SARS-CoV-2 vaccines can be administered together without loss of potency of either product. Additional studies will be required to evaluate coadministration of mAbs with other vaccine platforms.


Subject(s)
COVID-19 , Viral Vaccines , Animals , Antibodies, Monoclonal , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Macaca , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Vaccination
5.
Nat Commun ; 13(1): 3824, 2022 07 02.
Article in English | MEDLINE | ID: mdl-35780162

ABSTRACT

Omicron variant strains encode large numbers of changes in the spike protein compared to historical SARS-CoV-2 isolates. Although in vitro studies have suggested that several monoclonal antibody therapies lose neutralizing activity against Omicron variants, the effects in vivo remain largely unknown. Here, we report on the protective efficacy against three SARS-CoV-2 Omicron lineage strains (BA.1, BA.1.1, and BA.2) of two monoclonal antibody therapeutics (S309 [Vir Biotechnology] monotherapy and AZD7442 [AstraZeneca] combination), which correspond to ones used to treat or prevent SARS-CoV-2 infections in humans. Despite losses in neutralization potency in cell culture, S309 or AZD7442 treatments reduced BA.1, BA.1.1, and BA.2 lung infection in susceptible mice that express human ACE2 (K18-hACE2) in prophylactic and therapeutic settings. Correlation analyses between in vitro neutralizing activity and reductions in viral burden in K18-hACE2 or human FcγR transgenic mice suggest that S309 and AZD7442 have different mechanisms of protection against Omicron variants, with S309 utilizing Fc effector function interactions and AZD7442 acting principally by direct neutralization. Our data in mice demonstrate the resilience of S309 and AZD7442 mAbs against emerging SARS-CoV-2 variant strains and provide insight into the relationship between loss of antibody neutralization potency and retained protection in vivo.


Subject(s)
COVID-19 Drug Treatment , SARS-CoV-2 , Animals , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal/therapeutic use , Antibodies, Neutralizing , Antibodies, Viral/therapeutic use , Drug Combinations , Humans , Membrane Glycoproteins , Mice , Neutralization Tests , Spike Glycoprotein, Coronavirus , Viral Envelope Proteins
6.
Sci Transl Med ; 14(635): eabl8124, 2022 03 09.
Article in English | MEDLINE | ID: mdl-35076282

ABSTRACT

Despite the success of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines, there remains a need for more prevention and treatment options for individuals remaining at risk of coronavirus disease 2019 (COVID-19). Monoclonal antibodies (mAbs) against the viral spike protein have potential to both prevent and treat COVID-19 and reduce the risk of severe disease and death. Here, we describe AZD7442, a combination of two mAbs, AZD8895 (tixagevimab) and AZD1061 (cilgavimab), that simultaneously bind to distinct, nonoverlapping epitopes on the spike protein receptor binding domain to neutralize SARS-CoV-2. Initially isolated from individuals with prior SARS-CoV-2 infection, the two mAbs were designed to extend their half-lives and reduce effector functions. The AZD7442 mAbs individually prevent the spike protein from binding to angiotensin-converting enzyme 2 receptor, blocking virus cell entry, and neutralize all tested SARS-CoV-2 variants of concern. In a nonhuman primate model of SARS-CoV-2 infection, prophylactic AZD7442 administration prevented infection, whereas therapeutic administration accelerated virus clearance from the lung. In an ongoing phase 1 study in healthy participants (NCT04507256), a 300-mg intramuscular injection of AZD7442 provided SARS-CoV-2 serum geometric mean neutralizing titers greater than 10-fold above those of convalescent serum for at least 3 months, which remained threefold above those of convalescent serum at 9 months after AZD7442 administration. About 1 to 2% of serum AZD7442 was detected in nasal mucosa, a site of SARS-CoV-2 infection. Extrapolation of the time course of serum AZD7442 concentration suggests AZD7442 may provide up to 12 months of protection and benefit individuals at high-risk of COVID-19.


Subject(s)
COVID-19 Drug Treatment , COVID-19 , SARS-CoV-2 , Animals , Antibodies, Monoclonal , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/therapy , Drug Combinations , Half-Life , Humans , Immunization, Passive , Primates , Spike Glycoprotein, Coronavirus , COVID-19 Serotherapy
7.
Nat Microbiol ; 6(10): 1233-1244, 2021 10.
Article in English | MEDLINE | ID: mdl-34548634

ABSTRACT

Understanding the molecular basis for immune recognition of SARS-CoV-2 spike glycoprotein antigenic sites will inform the development of improved therapeutics. We determined the structures of two human monoclonal antibodies-AZD8895 and AZD1061-which form the basis of the investigational antibody cocktail AZD7442, in complex with the receptor-binding domain (RBD) of SARS-CoV-2 to define the genetic and structural basis of neutralization. AZD8895 forms an 'aromatic cage' at the heavy/light chain interface using germ line-encoded residues in complementarity-determining regions (CDRs) 2 and 3 of the heavy chain and CDRs 1 and 3 of the light chain. These structural features explain why highly similar antibodies (public clonotypes) have been isolated from multiple individuals. AZD1061 has an unusually long LCDR1; the HCDR3 makes interactions with the opposite face of the RBD from that of AZD8895. Using deep mutational scanning and neutralization escape selection experiments, we comprehensively mapped the crucial binding residues of both antibodies and identified positions of concern with regards to virus escape from antibody-mediated neutralization. Both AZD8895 and AZD1061 have strong neutralizing activity against SARS-CoV-2 and variants of concern with antigenic substitutions in the RBD. We conclude that germ line-encoded antibody features enable recognition of the SARS-CoV-2 spike RBD and demonstrate the utility of the cocktail AZD7442 in neutralizing emerging variant viruses.


Subject(s)
Antibodies, Neutralizing/chemistry , Antibodies, Neutralizing/genetics , SARS-CoV-2/immunology , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/genetics , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/chemistry , Antibodies, Viral/genetics , Antibodies, Viral/immunology , Antigenic Variation , Binding Sites , COVID-19/immunology , COVID-19/virology , Complementarity Determining Regions/chemistry , Complementarity Determining Regions/genetics , Humans , Mutation , Protein Domains , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology
8.
bioRxiv ; 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33532768

ABSTRACT

The SARS-CoV-2 pandemic has led to an urgent need to understand the molecular basis for immune recognition of SARS-CoV-2 spike (S) glycoprotein antigenic sites. To define the genetic and structural basis for SARS-CoV-2 neutralization, we determined the structures of two human monoclonal antibodies COV2-2196 and COV2-21301, which form the basis of the investigational antibody cocktail AZD7442, in complex with the receptor binding domain (RBD) of SARS-CoV-2. COV2-2196 forms an 'aromatic cage' at the heavy/light chain interface using germline-encoded residues in complementarity determining regions (CDRs) 2 and 3 of the heavy chain and CDRs 1 and 3 of the light chain. These structural features explain why highly similar antibodies (public clonotypes) have been isolated from multiple individuals1-4. The structure of COV2-2130 reveals that an unusually long LCDR1 and HCDR3 make interactions with the opposite face of the RBD from that of COV2-2196. Using deep mutational scanning and neutralization escape selection experiments, we comprehensively mapped the critical residues of both antibodies and identified positions of concern for possible viral escape. Nonetheless, both COV2-2196 and COV2130 showed strong neutralizing activity against SARS-CoV-2 strain with recent variations of concern including E484K, N501Y, and D614G substitutions. These studies reveal germline-encoded antibody features enabling recognition of the RBD and demonstrate the activity of a cocktail like AZD7442 in preventing escape from emerging variant viruses.

9.
Nature ; 584(7821): 443-449, 2020 08.
Article in English | MEDLINE | ID: mdl-32668443

ABSTRACT

The ongoing pandemic of coronavirus disease 2019 (COVID-19), which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a major threat to global health1 and the medical countermeasures available so far are limited2,3. Moreover, we currently lack a thorough understanding of the mechanisms of humoral immunity to SARS-CoV-24. Here we analyse a large panel of human monoclonal antibodies that target the spike (S) glycoprotein5, and identify several that exhibit potent neutralizing activity and fully block the receptor-binding domain of the S protein (SRBD) from interacting with human angiotensin-converting enzyme 2 (ACE2). Using competition-binding, structural and functional studies, we show that the monoclonal antibodies can be clustered into classes that recognize distinct epitopes on the SRBD, as well as distinct conformational states of the S trimer. Two potently neutralizing monoclonal antibodies, COV2-2196 and COV2-2130, which recognize non-overlapping sites, bound simultaneously to the S protein and neutralized wild-type SARS-CoV-2 virus in a synergistic manner. In two mouse models of SARS-CoV-2 infection, passive transfer of COV2-2196, COV2-2130 or a combination of both of these antibodies protected mice from weight loss and reduced the viral burden and levels of inflammation in the lungs. In addition, passive transfer of either of two of the most potent ACE2-blocking monoclonal antibodies (COV2-2196 or COV2-2381) as monotherapy protected rhesus macaques from SARS-CoV-2 infection. These results identify protective epitopes on the SRBD and provide a structure-based framework for rational vaccine design and the selection of robust immunotherapeutic agents.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Betacoronavirus/immunology , Coronavirus Infections/immunology , Coronavirus Infections/prevention & control , Pandemics/prevention & control , Pneumonia, Viral/immunology , Pneumonia, Viral/prevention & control , Angiotensin-Converting Enzyme 2 , Animals , Antibodies, Monoclonal/immunology , Betacoronavirus/chemistry , Binding, Competitive , COVID-19 , Cell Line , Cross Reactions , Disease Models, Animal , Epitopes, B-Lymphocyte/chemistry , Epitopes, B-Lymphocyte/immunology , Female , Humans , Macaca mulatta , Male , Mice , Middle Aged , Neutralization Tests , Peptidyl-Dipeptidase A/genetics , Peptidyl-Dipeptidase A/metabolism , Pre-Exposure Prophylaxis , Severe acute respiratory syndrome-related coronavirus/chemistry , Severe acute respiratory syndrome-related coronavirus/immunology , SARS-CoV-2 , Severe Acute Respiratory Syndrome/immunology , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism
10.
bioRxiv ; 2020 May 22.
Article in English | MEDLINE | ID: mdl-32511409

ABSTRACT

The COVID-19 pandemic is a major threat to global health for which there are only limited medical countermeasures, and we lack a thorough understanding of mechanisms of humoral immunity 1,2 . From a panel of monoclonal antibodies (mAbs) targeting the spike (S) glycoprotein isolated from the B cells of infected subjects, we identified several mAbs that exhibited potent neutralizing activity with IC 50 values as low as 0.9 or 15 ng/mL in pseudovirus or wild-type ( wt ) SARS-CoV-2 neutralization tests, respectively. The most potent mAbs fully block the receptor-binding domain of S (S RBD ) from interacting with human ACE2. Competition-binding, structural, and functional studies allowed clustering of the mAbs into defined classes recognizing distinct epitopes within major antigenic sites on the S RBD . Electron microscopy studies revealed that these mAbs recognize distinct conformational states of trimeric S protein. Potent neutralizing mAbs recognizing unique sites, COV2-2196 and COV2-2130, bound simultaneously to S and synergistically neutralized authentic SARS-CoV-2 virus. In two murine models of SARS-CoV-2 infection, passive transfer of either COV2-2916 or COV2-2130 alone or a combination of both mAbs protected mice from severe weight loss and reduced viral burden and inflammation in the lung. These results identify protective epitopes on the S RBD and provide a structure-based framework for rational vaccine design and the selection of robust immunotherapeutic cocktails.

11.
J Interferon Cytokine Res ; 39(6): 331-346, 2019 06.
Article in English | MEDLINE | ID: mdl-31090472

ABSTRACT

RNA helicases play an important role in the response to microbial infection. Retinoic acid inducible gene-I (RIG-I) and members of the RIG-I-like receptor (RLR) family of helicases function as cytoplasmic pattern recognition receptors (PRRs) whose actions are essential for recognition of RNA viruses. RIG-I association with pathogen-associated molecular patterns (PAMPs) within viral RNA leads to its activation and signaling via the mitochondrial antiviral signaling (MAVS) adapter protein. This interaction mediates downstream signaling events that drive the innate immune response to virus infection. Here we identify the DEAH-box RNA helicase DHX15 as a RLR binding partner and signaling cofactor. In human cells, DHX15 is required for virus-induced RLR signaling of innate immune gene expression. Knockdown of DHX15 increased susceptibility to infection by RNA viruses of diverse genera, including Paramyxoviridae, Rhabdoviridae, and Picornaviridae. DHX15 associates with RIG-I caspase activation and recruitment domains (CARDs) through its amino terminus, in which the complex is recruited to MAVS on virus infection. Importantly, although DHX15 cannot substitute for RIG-I in innate immune signaling, DHX15 selectively binds PAMP RNA to promote RIG-I ATP hydrolysis and signaling activation in response to viral RNA. Our results define DHX15 as a coreceptor required for RLR innate immune responses to control RNA virus infection.


Subject(s)
RNA Helicases/immunology , RNA Virus Infections/immunology , Receptors, Pattern Recognition/immunology , Sendai virus/immunology , Signal Transduction/immunology , Cells, Cultured , HEK293 Cells , Humans
12.
Immunity ; 50(1): 64-76.e4, 2019 01 15.
Article in English | MEDLINE | ID: mdl-30635240

ABSTRACT

As long-lived post-mitotic cells, neurons employ unique strategies to resist pathogen infection while preserving cellular function. Here, using a murine model of Zika virus (ZIKV) infection, we identified an innate immune pathway that restricts ZIKV replication in neurons and is required for survival upon ZIKV infection of the central nervous system (CNS). We found that neuronal ZIKV infection activated the nucleotide sensor ZBP1 and the kinases RIPK1 and RIPK3, core components of virus-induced necroptotic cell death signaling. However, activation of this pathway in ZIKV-infected neurons did not induce cell death. Rather, RIPK signaling restricted viral replication by altering cellular metabolism via upregulation of the enzyme IRG1 and production of the metabolite itaconate. Itaconate inhibited the activity of succinate dehydrogenase, generating a metabolic state in neurons that suppresses replication of viral genomes. These findings demonstrate an immunometabolic mechanism of viral restriction during neuroinvasive infection.


Subject(s)
Glycoproteins/metabolism , Hydro-Lyases/metabolism , Neurons/physiology , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Receptors, Pattern Recognition/metabolism , Zika Virus Infection/immunology , Zika Virus/physiology , Animals , Cell Death , Cells, Cultured , Disease Models, Animal , Glycoproteins/genetics , Humans , Hydro-Lyases/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Neuroprotection , RNA, Viral/immunology , RNA-Binding Proteins , Receptor-Interacting Protein Serine-Threonine Kinases/genetics , Succinate Dehydrogenase/metabolism , Succinates/metabolism , Virus Replication
13.
J Leukoc Biol ; 105(2): 411-425, 2019 02.
Article in English | MEDLINE | ID: mdl-30457675

ABSTRACT

Pathogen recognition receptor (PRR) signaling is critical for triggering innate immune activation and the expression of immune response genes, including genes that impart restriction against virus replication. RIG-I-like receptors and TLRs are PRRs that signal immune activation and drive the expression of antiviral genes and the production of type I IFN leading to induction of IFN-stimulated genes, in part through the interferon regulatory factor (IRF) family of transcription factors. Previous studies with West Nile virus (WNV) showed that IRF3 and IRF7 regulate IFN expression in fibroblasts and neurons, whereas macrophages and dendritic cells (DCs) retained the ability to induce IFN-ß in the absence of IRF3 and IRF7 in a manner implicating IRF5 in PRR signaling actions. Here we assessed the contribution of IRF5 to immune gene induction in response to WNV infection in DCs. We examined IRF5-dependent gene expression and found that loss of IRF5 in mice resulted in modest and subtle changes in the expression of WNV-regulated genes. Anti-IRF5 chromatin immunoprecipitation with next-generation sequencing of genomic DNA coupled with mRNA analysis revealed unique IRF5 binding motifs within the mouse genome that are distinct from the canonical IRF binding motif and that link with IRF5-target gene expression. Using integrative bioinformatics analyses, we identified new IRF5 primary target genes in DCs in response to virus infection. This study provides novel insights into the distinct and unique innate immune and immune gene regulatory program directed by IRF5.


Subject(s)
Dendritic Cells/metabolism , Dendritic Cells/virology , Gene Expression Regulation , Interferon Regulatory Factors/metabolism , West Nile Fever/genetics , West Nile virus/physiology , Animals , Base Sequence , Binding Sites , DNA/metabolism , Interferon Regulatory Factors/deficiency , Macrophages/metabolism , Macrophages/virology , Mice, Inbred C57BL , Transcription, Genetic , West Nile Fever/pathology
14.
J Immunol ; 201(10): 3036-3050, 2018 11 15.
Article in English | MEDLINE | ID: mdl-30297339

ABSTRACT

We examined the signaling pathways and cell type-specific responses of IFN regulatory factor (IRF) 5, an immune-regulatory transcription factor. We show that the protein kinases IKKα, IKKß, IKKε, and TANK-binding kinase 1 each confer IRF5 phosphorylation/dimerization, thus extending the family of IRF5 activator kinases. Among primary human immune cell subsets, we found that IRF5 is most abundant in plasmacytoid dendritic cells (pDCs). Flow cytometric cell imaging revealed that IRF5 is specifically activated by endosomal TLR signaling. Comparative analyses revealed that IRF3 is activated in pDCs uniquely through RIG-I-like receptor (RLR) signaling. Transcriptomic analyses of pDCs show that the partitioning of TLR7/IRF5 and RLR/IRF3 pathways confers differential gene expression and immune cytokine production in pDCs, linking IRF5 with immune regulatory and proinflammatory gene expression. Thus, TLR7/IRF5 and RLR-IRF3 partitioning serves to polarize pDC response outcome. Strategies to differentially engage IRF signaling pathways should be considered in the design of immunotherapeutic approaches to modulate or polarize the immune response for specific outcome.


Subject(s)
Dendritic Cells/immunology , Interferon Regulatory Factor-3/immunology , Interferon Regulatory Factors/immunology , Signal Transduction/immunology , Cells, Cultured , Dendritic Cells/metabolism , Gene Expression Regulation/immunology , Humans , Interferon Regulatory Factor-3/metabolism , Interferon Regulatory Factors/metabolism
15.
Annu Rev Immunol ; 36: 667-694, 2018 04 26.
Article in English | MEDLINE | ID: mdl-29677479

ABSTRACT

Pattern recognition receptors (PRRs) survey intra- and extracellular spaces for pathogen-associated molecular patterns (PAMPs) within microbial products of infection. Recognition and binding to cognate PAMP ligand by specific PRRs initiates signaling cascades that culminate in a coordinated intracellular innate immune response designed to control infection. In particular, our immune system has evolved specialized PRRs to discriminate viral nucleic acid from host. These are critical sensors of viral RNA to trigger innate immunity in the vertebrate host. Different families of PRRs of virus infection have been defined and reveal a diversity of PAMP specificity for wide viral pathogen coverage to recognize and extinguish virus infection. In this review, we discuss recent insights in pathogen recognition by the RIG-I-like receptors, related RNA helicases, Toll-like receptors, and other RNA sensor PRRs, to present emerging themes in innate immune signaling during virus infection.


Subject(s)
DEAD Box Protein 58/metabolism , Host-Pathogen Interactions/genetics , Host-Pathogen Interactions/immunology , Virus Diseases/etiology , Virus Diseases/metabolism , Viruses/immunology , Animals , DEAD-box RNA Helicases/metabolism , Humans , Protein Processing, Post-Translational , RNA Helicases/metabolism , RNA, Viral/genetics , RNA, Viral/metabolism , Receptors, Immunologic , Signal Transduction , Toll-Like Receptors/metabolism
16.
Cell ; 169(2): 301-313.e11, 2017 Apr 06.
Article in English | MEDLINE | ID: mdl-28366204

ABSTRACT

Receptor-interacting protein kinase-3 (RIPK3) is an activator of necroptotic cell death, but recent work has implicated additional roles for RIPK3 in inflammatory signaling independent of cell death. However, while necroptosis has been shown to contribute to antiviral immunity, death-independent roles for RIPK3 in host defense have not been demonstrated. Using a mouse model of West Nile virus (WNV) encephalitis, we show that RIPK3 restricts WNV pathogenesis independently of cell death. Ripk3-/- mice exhibited enhanced mortality compared to wild-type (WT) controls, while mice lacking the necroptotic effector MLKL, or both MLKL and caspase-8, were unaffected. The enhanced susceptibility of Ripk3-/- mice arose from suppressed neuronal chemokine expression and decreased central nervous system (CNS) recruitment of T lymphocytes and inflammatory myeloid cells, while peripheral immunity remained intact. These data identify pleiotropic functions for RIPK3 in the restriction of viral pathogenesis and implicate RIPK3 as a key coordinator of immune responses within the CNS.


Subject(s)
Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , West Nile Fever/immunology , West Nile virus/physiology , Animals , Central Nervous System/metabolism , Chemokines/immunology , Leukocytes/immunology , Macrophages/immunology , Mice , Mice, Inbred C57BL , Necrosis , Neurons/metabolism
17.
Vaccine ; 35(15): 1964-1971, 2017 04 04.
Article in English | MEDLINE | ID: mdl-28279563

ABSTRACT

Vaccine adjuvants are essential to drive a protective immune response in cases where vaccine antigens are weakly immunogenic, where vaccine antigen is limited, or where an increase in potency is needed for a specific population, such as the elderly. To discover novel vaccine adjuvants, we used a high-throughput screen (HTS) designed to identify small-molecule agonists of the RIG-I-like receptor (RLR) pathway leading to interferon regulatory factor 3 (IRF3) activation. RLRs are a group of cytosolic pattern-recognition receptors that are essential for the recognition of viral nucleic acids during infection. Upon binding of viral nucleic acid ligands, the RLRs become activated and signal to transcription factors, including IRF3, to initiate an innate immune transcriptional program to control virus infection. Among our HTS hits were a series of benzothiazole compounds from which we designed the lead analog, KIN1148. KIN1148 induced dose-dependent IRF3 nuclear translocation and specific activation of IRF3-responsive promoters. Prime-boost immunization of mice with a suboptimal dose of a monovalent pandemic influenza split virus H1N1 A/California/07/2009 vaccine plus KIN1148 protected against a lethal challenge with mouse-adapted influenza virus (A/California/04/2009) and induced an influenza virus-specific IL-10 and Th2 response by T cells derived from lung and lung-draining lymph nodes. Prime-boost immunization with vaccine plus KIN1148, but not prime immunization alone, induced antibodies capable of inhibiting influenza virus hemagglutinin and neutralizing viral infectivity. Nevertheless, a single immunization with vaccine plus KIN1148 provided increased protection over vaccine alone and reduced viral load in the lungs after challenge. These findings suggest that protection was at least partially mediated by a cellular immune component and that the induction of Th2 and immunoregulatory cytokines by a KIN1148-adjuvanted vaccine may be particularly beneficial for ameliorating the immunopathogenesis that is associated with influenza viruses.


Subject(s)
Adjuvants, Immunologic/administration & dosage , Benzothiazoles/administration & dosage , DEAD Box Protein 58/metabolism , Influenza Vaccines/administration & dosage , Influenza Vaccines/immunology , Interferon Regulatory Factor-3/metabolism , Adjuvants, Immunologic/isolation & purification , Animals , Benzothiazoles/isolation & purification , Cell Line , Disease Models, Animal , Drug Evaluation, Preclinical , Female , High-Throughput Screening Assays , Humans , Mice, Inbred C57BL , Orthomyxoviridae Infections/prevention & control , Receptors, Immunologic , Survival Analysis
18.
J Exp Med ; 213(12): 2539-2552, 2016 11 14.
Article in English | MEDLINE | ID: mdl-27799623

ABSTRACT

Interferon (IFN) lambdas are critical antiviral effectors in hepatic and mucosal infections. Although IFNλ1, IFNλ2, and IFNλ3 act antiviral, genetic association studies have shown that expression of the recently discovered IFNL4 is detrimental to hepatitis C virus (HCV) infection through a yet unknown mechanism. Intriguingly, human IFNL4 harbors a genetic variant that introduces a premature stop codon. We performed a molecular and biochemical characterization of IFNλ4 to determine its role and regulation of expression. We found that IFNλ4 exhibits similar antiviral activity to IFNλ3 without negatively affecting antiviral IFN activity or cell survival. We show that humans deploy several mechanisms to limit expression of functional IFNλ4 through noncoding splice variants and nonfunctional protein isoforms. Furthermore, protein-coding IFNL4 mRNA are not loaded onto polyribosomes and lack a strong polyadenylation signal, resulting in poor translation efficiency. This study provides mechanistic evidence that humans suppress IFNλ4 expression, suggesting that immune function is dependent on other IFNL family members.


Subject(s)
Host-Pathogen Interactions , Interleukins/metabolism , Virus Diseases/metabolism , Alternative Splicing/genetics , Animals , Antiviral Agents/pharmacology , Base Sequence , Cell Death/drug effects , Cell Line, Tumor , Extracellular Space/metabolism , Frameshift Mutation/genetics , Hepacivirus/drug effects , Host-Pathogen Interactions/drug effects , Humans , Interferons , Interleukins/pharmacology , Intracellular Space/metabolism , Models, Biological , Pathogen-Associated Molecular Pattern Molecules/metabolism , Protein Biosynthesis/drug effects , Protein Isoforms/metabolism , Receptors, Cytokine/metabolism , Receptors, Interferon , Recombinant Proteins/pharmacology , Signal Transduction/drug effects
19.
EBioMedicine ; 9: 195-206, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27372014

ABSTRACT

Retinoic acid inducible gene-I (RIG-I) is a cytosolic pathogen recognition receptor that initiates the immune response against many RNA viruses. Upon RNA ligand binding, RIG-I undergoes a conformational change facilitating its homo-oligomerization and activation that results in its translocation from the cytosol to intracellular membranes to bind its signaling adaptor protein, mitochondrial antiviral-signaling protein (MAVS). Here we show that RIG-I activation is regulated by reversible acetylation. Acetyl-mimetic mutants of RIG-I do not form virus-induced homo-oligomers, revealing that acetyl-lysine residues of the RIG-I repressor domain prevent assembly to active homo-oligomers. During acute infection, deacetylation of RIG-I promotes its oligomerization upon ligand binding. We identify histone deacetylase 6 (HDAC6) as the deacetylase that promotes RIG-I activation and innate antiviral immunity to recognize and restrict RNA virus infection.


Subject(s)
DEAD Box Protein 58/metabolism , Histone Deacetylases/metabolism , Acetylation/drug effects , Animals , Bufexamac/pharmacology , Cell Line , DEAD Box Protein 58/antagonists & inhibitors , DEAD Box Protein 58/genetics , Genes, Reporter , HEK293 Cells , Hepacivirus/genetics , Hepacivirus/pathogenicity , Histone Deacetylase 6 , Histone Deacetylases/chemistry , Histone Deacetylases/genetics , Humans , Immunity, Innate/drug effects , Immunoblotting , Interferon-beta/genetics , Interferon-beta/metabolism , Mice , Mice, Inbred C57BL , Promoter Regions, Genetic , RNA Interference , RNA, Small Interfering/metabolism , Signal Transduction/drug effects
20.
J Virol ; 90(5): 2372-87, 2015 Dec 16.
Article in English | MEDLINE | ID: mdl-26676770

ABSTRACT

UNLABELLED: The cellular response to virus infection is initiated when pathogen recognition receptors (PRR) engage viral pathogen-associated molecular patterns (PAMPs). This process results in induction of downstream signaling pathways that activate the transcription factor interferon regulatory factor 3 (IRF3). IRF3 plays a critical role in antiviral immunity to drive the expression of innate immune response genes, including those encoding antiviral factors, type 1 interferon, and immune modulatory cytokines, that act in concert to restrict virus replication. Thus, small molecule agonists that can promote IRF3 activation and induce innate immune gene expression could serve as antivirals to induce tissue-wide innate immunity for effective control of virus infection. We identified small molecule compounds that activate IRF3 to differentially induce discrete subsets of antiviral genes. We tested a lead compound and derivatives for the ability to suppress infections caused by a broad range of RNA viruses. Compound administration significantly decreased the viral RNA load in cultured cells that were infected with viruses of the family Flaviviridae, including West Nile virus, dengue virus, and hepatitis C virus, as well as viruses of the families Filoviridae (Ebola virus), Orthomyxoviridae (influenza A virus), Arenaviridae (Lassa virus), and Paramyxoviridae (respiratory syncytial virus, Nipah virus) to suppress infectious virus production. Knockdown studies mapped this response to the RIG-I-like receptor pathway. This work identifies a novel class of host-directed immune modulatory molecules that activate IRF3 to promote host antiviral responses to broadly suppress infections caused by RNA viruses of distinct genera. IMPORTANCE: Incidences of emerging and reemerging RNA viruses highlight a desperate need for broad-spectrum antiviral agents that can effectively control infections caused by viruses of distinct genera. We identified small molecule compounds that can selectively activate IRF3 for the purpose of identifying drug-like molecules that can be developed for the treatment of viral infections. Here, we report the discovery of a hydroxyquinoline family of small molecules that can activate IRF3 to promote cellular antiviral responses. These molecules can prophylactically or therapeutically control infection in cell culture by pathogenic RNA viruses, including West Nile virus, dengue virus, hepatitis C virus, influenza A virus, respiratory syncytial virus, Nipah virus, Lassa virus, and Ebola virus. Our study thus identifies a class of small molecules with a novel mechanism to enhance host immune responses for antiviral activity against a variety of RNA viruses that pose a significant health care burden and/or that are known to cause infections with high case fatality rates.


Subject(s)
Antiviral Agents/pharmacology , Immunity, Innate/drug effects , Immunologic Factors/pharmacology , RNA Viruses/immunology , RNA Viruses/physiology , Virus Replication/drug effects , Animals , Antiviral Agents/isolation & purification , Cell Line , Gene Expression Profiling , Humans , Immunologic Factors/isolation & purification , Viral Load , Virus Cultivation
SELECTION OF CITATIONS
SEARCH DETAIL
...